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Stagnation-point Flow and Mass Transfer with Chemical Reaction Past a Permeable 
Stretching/Shrinking Sheet in a Nanofluid

(Aliran Titik Genangan dan Pemindahan Jisim dengan Tindak Balas Kimia Terhadap Helaian 
Meregang/Mengecut Telap dalam Nanobendalir)

NATALIA C. ROSCA, TEODOR GROSAN & IOAN POP*

ABSTRACT

A numerical study has been conducted to investigate the steady forced convection stagnation point-flow and mass 
transfer past a permeable stretching/shrinking sheet placed in a copper (Cu)- water based nanofluid. The system of 
partial differential equations is transformed, using appropriate transformations, into two ordinary differential equations, 
which are solved numerically using bvp4c function from Matlab. The results are obtained for the reduced skin-friction 
and reduced Sherwood number as well as for the velocity and concentration profiles for some values of the governing 
parameters. These results indicate that dual solutions exist for the shrinking sheet case (λ < 0). It is shown that for a 
regular fluid (φ = 0) a very good agreement exists between the present numerical results and those reported in the open 
literature. 
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ABSTRAK

Suatu kajian berangka telah dijalankan bagi mengkaji aliran titik genangan olakan paksa mantap dan pemindahan 
jisim terhadap helaian meregang/mengecut telap di dalam nanobendalir berasaskan air-kuprum(Cu). Sistem persamaan 
pembezaan separa dijelmakan kepada dua persamaan pembezaan biasa dengan penjelmaan yang bersesuaian, yang 
diselesaikan secara berangka menggunakan fungsi bvp4c daripada perisian Matlab. Keputusan diperoleh bagi geseran 
kulit terturun dan nombor Sherwood terturun, serta profil halaju dan kepekatan bagi beberapa nilai parameter menakluk. 
Keputusan menunjukkan yang penyelesaian dual wujud bagi kes helaian mengecut (λ < 0). Didapati bahawa bagi 
bendalir biasa atau asas (φ = 0), hasil perbandingan yang sangat baik diperoleh antara keputusan berangka terkini 
dengan keputusan yang dilaporkan oleh penyelidik terdahulu.

Kata kunci: Helaian meregang/mengecut; helaian telap; nanobendalir; pemindahan jisim

INTRODUCTION

The study of forced convection flow over a stretching (or 
shrinking) sheet has many applications in industries. For 
example, the thermal processing of sheet-like materials 
occurs in the production of paper, linoleum, polymeric 
sheets, roofing shingles, insulating materials, fine-
fiber mattes and boundary layer along a liquid film in 
condensation processes (Sparrow & Abraham 2005). The 
moving sheet induces motion in the neighboring fluid or, 
alternatively, the fluid may have an independent forced-
convection motion that is parallel to that of the sheet. It 
is very important to control the drag and the heat flux for 
better product quality. The study of laminar flow over 
stretching sheets is currently attracting the attention of a 
growing number of researchers because of the immense 
potential of nanofluids. Such applications can be found in 
food processing, transpiration cooling, reactor fluidization. 
The rate of heat and mass transfer within the boundary 
layer has a direct bearing on the success of the coating 
process and the chemical characteristics of the product. 

Crane (1970) presented an exact solution of the two-
dimensional Navier-Stokes equations for a stretching 
sheet problem. Gupta (1977) considered the effect of mass 
transfer on the Crane flow. Miklavĉiĉ and Wang (2006) 
investigated the flow over a shrinking sheet, which is an 
exact solution of the Navier-Stokes equations and it was 
shown that in order to maintain the flow over the shrinking 
sheet mass suction is required. Fang et al. (2008, 2009) and 
Fang (2008) investigated the flow induced by a shrinking 
sheet. The two-dimensional stagnation-point flow past a 
shrinking sheet was studied by Wang (2008). Goldstein 
(1965) has shown that this flow is essentially a backward 
flow and it shows different physical phenomena than the 
stretching flow.
 In order to improve heat and mass transfer in viscous 
fluids, a small fraction of solid nanoparticles has to be 
added. The term nanofluid has been suggested by Choi 
(1995) and it refers to fluids in which nano-scale particles 
are suspended in the base fluid. The behavior of nanofluids 
provides a basis for heat transfer intensification in industrial 
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sectors including transportation, power generation, thermal 
therapy for cancer treatment, chemical sectors, ventilation, 
air-conditioning, etc (Ding et al. 2007). References on 
nanofluids can be found in the book by Das et al. (2007) and 
in the review papers by Buongiorno (2006), Eagen et al. 
(2010), Fan and Wang (2011), Kakaç and Pramuanjaroenkij 
(2009), Lee et al. (2010), Wang and Mujumdar (2008) 
and Wong & Leon (2010). It is worth mentioning to this 
end, that stretching problems in nanofluids were studied 
by Bachok et al. (2010a, 2010b), Khan & Pop (2010) and 
Yacob et al. (2011). 
 The aim of this paper was to investigate the steady 
forced convection stagnation point-flow and mass transfer 
past a permeable stretching/shrinking sheet placed in a 
nanofluid using the mathematical nanofluid model proposed 
by Tiwari and Das (2007). Employing appropriate similar 
variables the partial differential equations were transformed 
into ordinary differential equations, which have been solved 
numerically. The effects of the pertinent parameters such 
as solid nanofluid volume fraction, stretching/shrinking, 
mass transfer and chemical reaction rate on the flow and 
mass flux characteristics have been studied.

BASIC EQUATIONS

Consider the steady two-dimensional boundary layer flow 
of a nanofluid near the stagnation point on a permeable 
linearly stretching/shrinking sheet with chemically 
reactive species undergoing first order chemical reaction. 
It is assumed that the velocity of the stretching/shrinking 
sheet is uw(x) = cx and that of the external (inviscid) 
flow is ue(x) = ax, where a and c are constants with a > 0 
and  c > 0 for a stretching sheet and c < 0 for a shrinking 
sheet, respectively. It is also assumed that the constant 
concentrations at the surface of the sheet and in the external 
flow are Cw and C

∞
, respectively. The physical model and 

the coordinate system is shown in Figure 1, where x and 
y are coordinates measured along the surface of the sheet 
and normal to it, respectively. Under these assumptions, 
the boundary layer equations of continuity, motion and 
solute distribution can be written as:

 , (1)

 , (2)

  , (3)

subject to the boundary conditions 

 u = uw(x) = cx, v = v0, C = Cw  at y = 0
 u → ue(x) = ax,  C → C

∞
  as  y → ∞. (4)

 Here u and v are the velocity components along x and y 
directions, v0 is the mass flux velocity with v0 < 0 for suction 
and v0 > 0 for injection (or blowing), respectively,  C is 
the mass concentration of the nanofluid, D is the diffusion 
coefficient and R denotes the reaction rate of the solute. 
Further, μnf is the dynamic viscosity of the nanofluid and 
ρnf is the density of the nanofluid, which are given in Table 
1 (Oztop & Abu-Nada 2008)

  (5)

where φ is the nanoparticle volume fraction, μf is the 
dynamic viscosity of the base fluid, ρf is the density of 
the base fluid and ρs is the density of the solid particle. 
The dynamic viscosity of the nanofluid μnf has been 
proposed by Brinkman (1952). It is worth mentioning 
that the expressions (5) are restricted to spherical 
nanoparticles, where it does not account for other shapes 
of nanoparticles. 
 We introduce now the stream function ψ defined as  u 
= �ψ/�y and v = -�ψ/�x. Equations (2) and (3) become:

  (6)

FIGURE 1. Physical model and coordinate system
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  (7)

and the boundary conditions (4) become:

 = cx,  = -v0,  C = Cw  at  y = 0

 → ax,  C → C
∞
  as  y → ∞.   (8)

 Next, we look for a similarity solution of Equations 
(6) and (7) of the following form: 
 
 ψ = (avf)

1/2 xf (η), C = C
∞
 + (Cw – C

∞
) θ(η), η = (a/vf)

1/2 y  

(9)

where vf  is the kinematic viscosity of the base fluid. Thus, 
the partial differential equations (6) and (7) are transformed 
into the following ordinary (similarity) differential 
equations:
  
 (10)

 θ̋ + Sc fθ́ – Sc βθ = 0, (11)

where Sc = vf / D  is the Schmidt number and β = R/a  is 
the reaction-rate parameter. The boundary conditions (8) 
become:

 f (0) = s,  f́(0) = λ,  θ(0) = 1  at  η = 0
 f́(η) → 1,  θ(η) → 0  as  η → ∞,	 (12)

where s = -v0/(avf)
1/2 is the mass transfer parameter with  

s > 0 for suction and s < 0 for injection, respectively, 
and λ = c/a is the stretching parameter with λ > 0 for 
stretching and λ < 0 for shrinking sheet, respectively. It 
is worth mentioning to this end that when φ = 0 (regular 
fluid) and s = 0  (impermeable sheet), Equation (10) and 
(11) reduce to those found by Bhattacharyya (2011).

 The quantities of physical interest are the skin 
friction coefficient Cf and the local Sherwood number Shx, 
which are defined as:
 
  (13)

where τw is the wall shear stress and qm is the wall mass 
concentration flux, which are defined as:

  (14)

 Using variables (9), we obtain:

  (15)

NUMERICAL RESULTS AND DISCUSSION

The considered problem is formulated in such a way so 
that we can consider different types of nanoparticles ( Cu, 
Al2O3, TiO2, etc.) and water as a base fluid. However, in 
order to save space, we will consider here only the case 
of Cu nanoparticles. The ordinary differential equations 
(ODEs) (10) and (11) subject to the boundary conditions 
(12), were solved numerically using the function bvp4c 
from Matlab. To accomplish this, the first step is to 
write Equations (10) and (11) as a system of first order 
differential equations by introducing new variables, one 
for each variable in the original problem plus one for each 
derivative up to the highest order derivative minus one. The 
bvp4c function implements a collocation method for the 
solution of the following boundary value problem

 ý = f (x, y),  a ≤ x ≤ b, (16)

subject to the two-point boundary conditions:

 bc(y(a), y(b)) = 0. (17)

TABLE 1. Physical properties of fluid and nanoparticles

Property Water Cu Al2O3 TiO2

cp  (J/kg K)

ρ		 (kg/m3)

k  (W/m K)

α x 107  (m2/s)

β x 10-5  (1/K)

4179

997.1

0.613

1.47

21

385

8933

400

1163.1

1.67

765 

3970 

40

131.7

0.85

686.2

4250

8.9538

30.7

0.9
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 The approximate solution S(x) is a continuous function 
that is a cubic polynomial on each subinterval [xn, xn+1]  of 
the mesh a = x0 < x1 < … < xN = b. It satisfies the boundary 
conditions:

 bc(S(a), S(b)) = 0, (18)

and it also satisfies the following differential equations 
(collocates) at both ends and mid-point of each 
subinterval:

 Ś(xn) = f (xn, S(xn)). (19)

 Ś((xn + xn+1)/2) = f ((xn + xn+1)/2, S((xn + xn+1)/2)).
 (20)

 Ś(xn+1) = f (xn+1, S(xn+1)). (21)

 These conditions result in a system of nonlinear 
algebraic equations for the coefficients defining S(x), 
which are solved iteratively by linearization. Here S(x) is 
a fourth order approximation to an isolated solution y(x), 
i.e., ||y(x) – S(x)|| ≤ Ch4, where h is the maximum of the 
step sizes hn = xn+1 – xn and C is a constant. For such an 
approximation, the residual r(x) in the ODEs is defined 
by:

 r(x) = Ś(x) – f (x, S(x)). (22)

 Mesh selection and error control are based on the 
residual of the continuous solution. The relative error 
tolerance was set to 10-10. In this method, we have chosen 
a suitable finite value of η →	∞, namely η = η

∞
 = 10. 

 Since the present problem may have more than one 
(dual) solution, the bvp4c function requires an initial guess 
of the desired solution for the ODEs (10) and (11). The 
guess should satisfy the boundary conditions and reveal 
the behavior of the solution. Determining an initial guess 
for the first (upper branch) solution is not difficult because 
the bvp4c method will converge to the first solution even 
for poor guesses. However, it is difficult to come up with 
a sufficiently good guess for the second (lower branch) 

solution of the system of ODEs (10) and (11). To overcome 
this difficulty, we start with a set of parameter values for 
which the problem is easy to be solved. Then, we use 
the obtained result as initial guess for the solution of the 
problem with small variation of the parameters. This is 
repeated until we reach the right values of the parameters. 
This technique is called continuation (Shampine et al. 
2010).
 The numerical computations are performed for several 
values of the dimensionless parameters involved in the 
equations, such as the stretching/shrinking parameter λ, 
suction/injection parameter s, nanofluid volume fraction 
parameter φ, Schmidt number Sc and the reaction-rate 
parameter β. As in Oztop & Abu-Nada (2008), we take the 
values of the solid volume fraction φ in the range  0 ≤ φ 
≤ 0.2. To validate the accuracy of the numerical scheme, 
a comparison of the obtained results corresponding to 
the reduced skin friction coefficient f˝ (0) is made with 
the available published results of Bhattacharyya (2011) 
and Ishak et al. (2010) for several values of λ when φ 
= 0 (regular fluid) and s = 0 (impermeable sheet). This 
comparison is shown in Table 2 and it is found that the 
results are in excellent agreement. It, therefore, gives us 
the confidence that the present results are accurate.
 Figures 2 to 6 show the variation of the reduced 
skin friction coefficient f˝ (0) and the concentration 
gradient at the sheet –θ́(0) (which is proportional to the 
rate of mass transfer from the sheet) with λ for several 
values of s = 0, 1,2 and φ = 0, 0.1, 0.2 when the Schmidt 
number Sc and reaction-rate parameter β take the values 
Sc = β = 1. It is evident from these figures that multiple 
(dual) solutions of Equation (10) and (11) subject to 
the boundary conditions (12) exist (upper and lower 
branch solutions) when λ < 0 (shrinking sheet). Which 
solution actually occurs depend on the flow stability, 
which is not investigated in this paper. There exists a 
critical value λc < 0 of λ < 0 for which the upper branch 
solution meets the lower branch solution, respectively. 
It is seen from Figure 2 that in the case when s = 0 the 
solutions for f̋(0) are unique when λ > –1, dual when 
λc ≤ λ ≤ –1 and no solution when λ < λc < 0. Further, in 
the case s = 2 the solutions for f˝(0)  are unique when λ 

TABLE 2. Comparison of the values of f̋(0) for several values of λ when φ = 0 and s = 0 

λ Present study Bhattacharyya (2011) Ishak et al. (2010)
First solution Second solution First solution Second solution First solution Second solution

-0.25 1.4022407 1.4022405 1.402241
-0.50 1.4956697 1.4956697 1.495670
-0.75 1.4892981 1.4892981 1.489298
-1.00 1.3288168 0 1.3288169 0 1.328817 0
-1.15 1.0822311 0.1167020 1.0822316 0.1167023 1.082231 0.116702
-1.20 0.9324733 0.2336496 0.9324728 0.2336491 0.932474 0.233650
-1.2465 0.5842816 0.5542962 0.5842915 0.5542856 0.584295 0.554283
-1.24657 0.5745372 0.5640096 0.5745268 0.5639987
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> –0.4, dual when λc ≤ λ ≤ –0.4 and no solution when λ 
< λc < 0 (Figure 3), while in the case when φ = 0.1  the 
solutions for f̋(0) are unique when λ > –1, dual when 
λc ≤ λ ≤ –1 and no solution when λ < λc < 0  (Figure 4). 
Beyond λc the boundary layer separates from the surface 
of the sheet, thus no solution is obtained. Based on our 
computation, λc = –1.24657 when s = 0 and φ = 0. 0.1. 
0.2 (Figure 2). For s = 2, λc = –2.9270 when φ = 0, λc = 
–3.3850 when φ = 0.1 and λc = –3.5065 when φ = 0.2  
(Figure 3). For φ = 0.1, λc = –1.24657 when s = 0, λc = 
–2.0446  when s = 1  and λc = –3.3850 when s = 2 (Figure 
4). These results show that |λc| increases with increasing 

φ. It can be also seen that the value of |λc| is greater for 
nanofluid (φ ≠ 0) than for a regular fluid (φ = 0). On 
the other hand, Figures 5 and 6 display the variation of 
the concentration gradient at the sheet –θ́(0) with λ for 
φ = 0, 0,1, 0,2 when s = 2,  Sc = 1 and β = 1 (Figure 5) 
and the variation of –θ́(0)  with λ for s = 0, 1, 2 when 
φ = 0.1, Sc = 1 and β = 1 (Figure 6). In these cases, λc 
takes the same values as for f̋(0). Also –θ́(0) increases 
with φ indicating a better concentration gradient at the 
sheet. Thus, the parameters φ, λ and s can be used to 
control the magnitude of the skin friction coefficient 
and the local Sherwood number.

FIGURE 2. Variation of f̋(0) with λ  for φ = 0, 0.1, 0.2 when s  = 0
λ

f ˝
(0

)

φ = 0, 0.1, 02

λc = -1.24657

φ = 0, 0.1, 02

φ = 0, 0.1, 02

λc = –3.5065

λc = –3.3850

λc = –2.9270

λ

f ˝
(0

)

FIGURE 3. Variation of f̋(0) with  λ for φ = 0, 0.1, 0.2 when s = 2
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 The velocity f́(η) and concentration θ(η) profiles are 
presented for different values of the parameters considered 
in Figures 7 and 8. It is observed that the lower branch 
profiles also satisfy the far field boundary conditions 
asymptotically, thus support the validity of the present 
results. Besides supporting the dual nature of the solution 
to the boundary value problem (10) and (11) presented in 
Figures 2 to 6, both Figure 7 and 8 show that the boundary 
layer thickness is higher for the second (lower branch) 
solution compared to the first (upper branch) solution, 
which in turn produces higher values of f˝(0)  and –θ́(0). 
Finally, values of the reduced skin friction f̋(0) and 
Sherwood number –θ́(0) for λ = 0, 0.1, 1, 10  when s = 0, 

1, 2, φ = 0, 0.1, 0.2, Sc = 1 and β = 1 are given in Table 3. 
It is to be noticed that for λ < 1 and a fixed value of s, both 
f̋(0) and –θ́(0) increase with φ, while f̋(0) and –θ́(0) 
decrease with φ when λ is large and s is fixed.

CONCLUSION

We extended the classical problem of the steady 
stagnation-point flow and mass transfer with the first order 
chemical reaction by considering a permeable stretching/
shrinking sheet in a nanofluid. The transformed ODEs are 
solved numerically by using the function bvp4c from 
Matlab. It is found that for a stretching sheet (λ > 0) the 

λc = –2.0446

λc = –3.3850

λc = –1.24657

λ

f ˝
(0

)
s = 0, 1, 2

FIGURE 4. Variation of f ̋(0) with λ for s  = 0, 1, 2  when φ = 0.1

λc = –2.9270

φ = 0, 0.1, 0.2

φ = 0, 0.1, 0.2

λ

f ˝
(0

) λc = –3.5065

λc = –3.3850

FIGURE 5. Variation of –θ́(0) with λ for φ = 0, 0.1, 0.2  when s = 2,  Sc = 1 and β =1
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FIGURE 6. Variation of  –θ́(0)  with λ for s = 0, 1, 2 when φ = 0.1, Sc = 1 and  β = 1

λc = –2.0446

λc = –1.24657

λ

–θ
́(

0)

λc = –3.3850

FIGURE 7. Velocity profiles f́(η) for φ = 0, 0.1, 0.2  when s = 2, λ	=	– 1.2, Sc = 1 and β = 1

φ = 0, 0.1, 0.2

λ

–θ
́(

0)

φ = 0, 0.1, 0.2

FIGURE 8. Concentration profiles θ(η) for φ = 0, 0.1, 0.2 when s = 2, λ = –1.2, Sc = 1 and β = 1

φ = 0, 0.1, 0.2

λ

–θ
́(

0)

φ = 0, 0.1, 0.2
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reduced skin friction increases as both s and φ increase, 
while dual solutions are found to exist for a shrinking 
sheet (λ < 0). Boundary layer thickness (both momentum 
and concentration) is higher for the second solution than 
for the first solution. In fact, the present paper extends 
that of Bhattacharyya (2011) to a nanofluid case.
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